Abstract:We introduce the Nemotron 3 family of models - Nano, Super, and Ultra. These models deliver strong agentic, reasoning, and conversational capabilities. The Nemotron 3 family uses a Mixture-of-Experts hybrid Mamba-Transformer architecture to provide best-in-class throughput and context lengths of up to 1M tokens. Super and Ultra models are trained with NVFP4 and incorporate LatentMoE, a novel approach that improves model quality. The two larger models also include MTP layers for faster text generation. All Nemotron 3 models are post-trained using multi-environment reinforcement learning enabling reasoning, multi-step tool use, and support granular reasoning budget control. Nano, the smallest model, outperforms comparable models in accuracy while remaining extremely cost-efficient for inference. Super is optimized for collaborative agents and high-volume workloads such as IT ticket automation. Ultra, the largest model, provides state-of-the-art accuracy and reasoning performance. Nano is released together with its technical report and this white paper, while Super and Ultra will follow in the coming months. We will openly release the model weights, pre- and post-training software, recipes, and all data for which we hold redistribution rights.
Abstract:We present Nemotron 3 Nano 30B-A3B, a Mixture-of-Experts hybrid Mamba-Transformer language model. Nemotron 3 Nano was pretrained on 25 trillion text tokens, including more than 3 trillion new unique tokens over Nemotron 2, followed by supervised fine tuning and large-scale RL on diverse environments. Nemotron 3 Nano achieves better accuracy than our previous generation Nemotron 2 Nano while activating less than half of the parameters per forward pass. It achieves up to 3.3x higher inference throughput than similarly-sized open models like GPT-OSS-20B and Qwen3-30B-A3B-Thinking-2507, while also being more accurate on popular benchmarks. Nemotron 3 Nano demonstrates enhanced agentic, reasoning, and chat abilities and supports context lengths up to 1M tokens. We release both our pretrained Nemotron 3 Nano 30B-A3B Base and post-trained Nemotron 3 Nano 30B-A3B checkpoints on Hugging Face.




Abstract:Training stability of large language models(LLMs) is an important research topic. Reproducing training instabilities can be costly, so we use a small language model with 830M parameters and experiment with higher learning rates to force models to diverge. One of the sources of training instability is the growth of logits in attention layers. We extend the focus of the previous work and look not only at the magnitude of the logits but at all outputs of linear layers in the Transformer block. We observe that with a high learning rate the L2 norm of all linear layer outputs can grow with each training step and the model diverges. Specifically we observe that QKV, Proj and FC2 layers have the largest growth of the output magnitude. This prompts us to explore several options: 1) apply layer normalization not only after QK layers but also after Proj and FC2 layers too; 2) apply layer normalization after the QKV layer (and remove pre normalization). 3) apply QK layer normalization together with softmax capping. We show that with the last two methods we can increase learning rate by 1.5x (without model divergence) in comparison to an approach based on QK layer normalization only. Also we observe significant perplexity improvements for all three methods in comparison to the baseline model.