Alert button
Picture for Baptiste Bouvier

Baptiste Bouvier

Alert button

A Model You Can Hear: Audio Identification with Playable Prototypes

Aug 05, 2022
Romain Loiseau, Baptiste Bouvier, Yann Teytaut, Elliot Vincent, Mathieu Aubry, Loic Landrieu

Figure 1 for A Model You Can Hear: Audio Identification with Playable Prototypes
Figure 2 for A Model You Can Hear: Audio Identification with Playable Prototypes
Figure 3 for A Model You Can Hear: Audio Identification with Playable Prototypes
Figure 4 for A Model You Can Hear: Audio Identification with Playable Prototypes

Machine learning techniques have proved useful for classifying and analyzing audio content. However, recent methods typically rely on abstract and high-dimensional representations that are difficult to interpret. Inspired by transformation-invariant approaches developed for image and 3D data, we propose an audio identification model based on learnable spectral prototypes. Equipped with dedicated transformation networks, these prototypes can be used to cluster and classify input audio samples from large collections of sounds. Our model can be trained with or without supervision and reaches state-of-the-art results for speaker and instrument identification, while remaining easily interpretable. The code is available at: https://github.com/romainloiseau/a-model-you-can-hear

Viaarxiv icon

Learning medical triage from clinicians using Deep Q-Learning

Mar 28, 2020
Albert Buchard, Baptiste Bouvier, Giulia Prando, Rory Beard, Michail Livieratos, Dan Busbridge, Daniel Thompson, Jonathan Richens, Yuanzhao Zhang, Adam Baker, Yura Perov, Kostis Gourgoulias, Saurabh Johri

Figure 1 for Learning medical triage from clinicians using Deep Q-Learning
Figure 2 for Learning medical triage from clinicians using Deep Q-Learning
Figure 3 for Learning medical triage from clinicians using Deep Q-Learning
Figure 4 for Learning medical triage from clinicians using Deep Q-Learning

Medical Triage is of paramount importance to healthcare systems, allowing for the correct orientation of patients and allocation of the necessary resources to treat them adequately. While reliable decision-tree methods exist to triage patients based on their presentation, those trees implicitly require human inference and are not immediately applicable in a fully automated setting. On the other hand, learning triage policies directly from experts may correct for some of the limitations of hard-coded decision-trees. In this work, we present a Deep Reinforcement Learning approach (a variant of DeepQ-Learning) to triage patients using curated clinical vignettes. The dataset, consisting of 1374 clinical vignettes, was created by medical doctors to represent real-life cases. Each vignette is associated with an average of 3.8 expert triage decisions given by medical doctors relying solely on medical history. We show that this approach is on a par with human performance, yielding safe triage decisions in 94% of cases, and matching expert decisions in 85% of cases. The trained agent learns when to stop asking questions, acquires optimized decision policies requiring less evidence than supervised approaches, and adapts to the novelty of a situation by asking for more information. Overall, we demonstrate that a Deep Reinforcement Learning approach can learn effective medical triage policies directly from expert decisions, without requiring expert knowledge engineering. This approach is scalable and can be deployed in healthcare settings or geographical regions with distinct triage specifications, or where trained experts are scarce, to improve decision making in the early stage of care.

* 17 pages, 4 figures, 3 tables, preprint, in press 
Viaarxiv icon