Abstract:Large multimodal models have enabled one-click storybook generation, where users provide a short description and receive a multi-page illustrated story. However, the underlying story state, such as characters, world settings, and page-level objects, remains implicit, making edits coarse-grained and often breaking visual consistency. We present StoryState, an agent-based orchestration layer that introduces an explicit and editable story state on top of training-free text-to-image generation. StoryState represents each story as a structured object composed of a character sheet, global settings, and per-page scene constraints, and employs a small set of LLM agents to maintain this state and derive 1Prompt1Story-style prompts for generation and editing. Operating purely through prompts, StoryState is model-agnostic and compatible with diverse generation backends. System-level experiments on multi-page editing tasks show that StoryState enables localized page edits, improves cross-page consistency, and reduces unintended changes, interaction turns, and editing time compared to 1Prompt1Story, while approaching the one-shot consistency of Gemini Storybook. Code is available at https://github.com/YuZhenyuLindy/StoryState
Abstract:Maintaining visual and semantic consistency across frames is a key challenge in text-to-image storytelling. Existing training-free methods, such as One-Prompt-One-Story, concatenate all prompts into a single sequence, which often induces strong embedding correlation and leads to color leakage, background blending, and identity drift. We propose DeCorStory, a training-free inference-time framework that explicitly reduces inter-frame semantic interference. DeCorStory applies Gram-Schmidt prompt embedding decorrelation to orthogonalize frame-level semantics, followed by singular value reweighting to strengthen prompt-specific information and identity-preserving cross-attention to stabilize character identity during diffusion. The method requires no model modification or fine-tuning and can be seamlessly integrated into existing diffusion pipelines. Experiments demonstrate consistent improvements in prompt-image alignment, identity consistency, and visual diversity, achieving state-of-the-art performance among training-free baselines. Code is available at: https://github.com/YuZhenyuLindy/DeCorStory
Abstract:Generating coherent visual stories requires maintaining subject identity across multiple images while preserving frame-specific semantics. Recent training-free methods concatenate identity and frame prompts into a unified representation, but this often introduces inter-frame semantic interference that weakens identity preservation in complex stories. We propose ReDiStory, a training-free framework that improves multi-frame story generation via inference-time prompt embedding reorganization. ReDiStory explicitly decomposes text embeddings into identity-related and frame-specific components, then decorrelates frame embeddings by suppressing shared directions across frames. This reduces cross-frame interference without modifying diffusion parameters or requiring additional supervision. Under identical diffusion backbones and inference settings, ReDiStory improves identity consistency while maintaining prompt fidelity. Experiments on the ConsiStory+ benchmark show consistent gains over 1Prompt1Story on multiple identity consistency metrics. Code is available at: https://github.com/YuZhenyuLindy/ReDiStory