Abstract:Generating medical reports for X-ray images is a challenging task, particularly in an unpaired scenario where paired image-report data is unavailable for training. To address this challenge, we propose a novel model that leverages the available information in two distinct datasets, one comprising reports and the other consisting of images. The core idea of our model revolves around the notion that combining auto-encoding report generation with multi-modal (report-image) alignment can offer a solution. However, the challenge persists regarding how to achieve this alignment when pair correspondence is absent. Our proposed solution involves the use of auxiliary tasks, particularly contrastive learning and classification, to position related images and reports in close proximity to each other. This approach differs from previous methods that rely on pre-processing steps using external information stored in a knowledge graph. Our model, named MedRAT, surpasses previous state-of-the-art methods, demonstrating the feasibility of generating comprehensive medical reports without the need for paired data or external tools.
Abstract:Generating medical reports for X-ray images presents a significant challenge, particularly in unpaired scenarios where access to paired image-report data for training is unavailable. Previous works have typically learned a joint embedding space for images and reports, necessitating a specific labeling schema for both. We introduce an innovative approach that eliminates the need for consistent labeling schemas, thereby enhancing data accessibility and enabling the use of incompatible datasets. This approach is based on cycle-consistent mapping functions that transform image embeddings into report embeddings, coupled with report auto-encoding for medical report generation. Our model and objectives consider intricate local details and the overarching semantic context within images and reports. This approach facilitates the learning of effective mapping functions, resulting in the generation of coherent reports. It outperforms state-of-the-art results in unpaired chest X-ray report generation, demonstrating improvements in both language and clinical metrics.
Abstract:Bundle adjustment is the common way to solve localization and mapping. It is an iterative process in which a system of non-linear equations is solved using two optimization methods, weighted by a damping factor. In the classic approach, the latter is chosen heuristically by the Levenberg-Marquardt algorithm on each iteration. This might take many iterations, making the process computationally expensive, which might be harmful to real-time applications. We propose to replace this heuristic by viewing the problem in a holistic manner, as a game, and formulating it as a reinforcement-learning task. We set an environment which solves the non-linear equations and train an agent to choose the damping factor in a learned manner. We demonstrate that our approach considerably reduces the number of iterations required to reach the bundle adjustment's convergence, on both synthetic and real-life scenarios. We show that this reduction benefits the classic approach and can be integrated with other bundle adjustment acceleration methods.
Abstract:Accurately detecting objects in the environment is a key challenge for autonomous vehicles. However, obtaining annotated data for detection is expensive and time-consuming. We introduce PatchContrast, a novel self-supervised point cloud pre-training framework for 3D object detection. We propose to utilize two levels of abstraction to learn discriminative representation from unlabeled data: proposal-level and patch-level. The proposal-level aims at localizing objects in relation to their surroundings, whereas the patch-level adds information about the internal connections between the object's components, hence distinguishing between different objects based on their individual components. We demonstrate how these levels can be integrated into self-supervised pre-training for various backbones to enhance the downstream 3D detection task. We show that our method outperforms existing state-of-the-art models on three commonly-used 3D detection datasets.
Abstract:Anomaly detection aims at identifying images that deviate significantly from the norm. We focus on algorithms that embed the normal training examples in space and when given a test image, detect anomalies based on the features distance to the k-nearest training neighbors. We propose a new operator that takes into account the varying structure & importance of the features in the embedding space. Interestingly, this is done by taking into account not only the nearest neighbors, but also the neighbors of these neighbors (k-NNN). We show that by simply replacing the nearest neighbor component in existing algorithms by our k-NNN operator, while leaving the rest of the algorithms untouched, each algorithms own results are improved. This is the case both for common homogeneous datasets, such as flowers or nuts of a specific type, as well as for more diverse datasets
Abstract:Medical imaging analysis plays a critical role in the diagnosis and treatment of various medical conditions. This paper focuses on chest X-ray images and their corresponding radiological reports. It presents a new model that learns a joint X-ray image & report representation. The model is based on a novel alignment scheme between the visual data and the text, which takes into account both local and global information. Furthermore, the model integrates domain-specific information of two types -- lateral images and the consistent visual structure of chest images. Our representation is shown to benefit three types of retrieval tasks: text-image retrieval, class-based retrieval, and phrase-grounding.
Abstract:Controllable image captioning models generate human-like image descriptions, enabling some kind of control over the generated captions. This paper focuses on controlling the caption length, i.e. a short and concise description or a long and detailed one. Since existing image captioning datasets contain mostly short captions, generating long captions is challenging. To address the shortage of long training examples, we propose to enrich the dataset with varying-length self-generated captions. These, however, might be of varying quality and are thus unsuitable for conventional training. We introduce a novel training strategy that selects the data points to be used at different times during the training. Our method dramatically improves the length-control abilities, while exhibiting SoTA performance in terms of caption quality. Our approach is general and is shown to be applicable also to paragraph generation.
Abstract:Archaeology is an intriguing domain for computer vision. It suffers not only from shortage in (labeled) data, but also from highly-challenging data, which is often extremely abraded and damaged. This paper proposes a novel semi-supervised model for classification and retrieval of images of archaeological artifacts. This model utilizes unique data that exists in the domain -- manual drawings made by special artists.These are used during training to implicitly transfer the domain knowledge from the drawings to their corresponding images, improving their classification results. We show that while learning how to classify, our model also learns how to generate drawings of the artifacts, an important documentation task, which is currently performed manually. Last but not least, we collected a new dataset of stamp-seals of the Southern Levant.
Abstract:3D object detection within large 3D scenes is challenging not only due to the sparse and irregular 3D point clouds, but also due to the extreme foreground-background imbalance in the scene and class imbalance. A common approach is to add ground-truth objects from other scenes. Differently, we propose to modify the scenes by removing elements (voxels), rather than adding ones. Our approach selects the "meaningful" voxels, in a manner that addresses both types dataset imbalance. The approach is general and can be applied to any voxel-based detector, yet the meaningfulness of a voxel is network-dependent. Our voxel selection is shown to improve the performance of several prominent 3D detection methods.
Abstract:A polygonal mesh is the most-commonly used representation of surfaces in computer graphics; thus, a variety of classification networks have been recently proposed. However, while adversarial attacks are wildly researched in 2D, almost no works on adversarial meshes exist. This paper proposes a novel, unified, and general adversarial attack, which leads to misclassification of numerous state-of-the-art mesh classification neural networks. Our attack approach is black-box, i.e. it has access only to the network's predictions, but not to the network's full architecture or gradients. The key idea is to train a network to imitate a given classification network. This is done by utilizing random walks along the mesh surface, which gather geometric information. These walks provide insight onto the regions of the mesh that are important for the correct prediction of the given classification network. These mesh regions are then modified more than other regions in order to attack the network in a manner that is barely visible to the naked eye.