Abstract:Argumentation is a central subarea of Artificial Intelligence (AI) for modeling and reasoning about arguments. The semantics of abstract argumentation frameworks (AFs) is given by sets of arguments (extensions) and conditions on the relationship between them, such as stable or admissible. Today's solvers implement tasks such as finding extensions, deciding credulous or skeptical acceptance, counting, or enumerating extensions. While these tasks are well charted, the area between decision, counting/enumeration and fine-grained reasoning requires expensive reasoning so far. We introduce a novel concept (facets) for reasoning between decision and enumeration. Facets are arguments that belong to some extensions (credulous) but not to all extensions (skeptical). They are most natural when a user aims to navigate, filter, or comprehend the significance of specific arguments, according to their needs. We study the complexity and show that tasks involving facets are much easier than counting extensions. Finally, we provide an implementation, and conduct experiments to demonstrate feasibility.
Abstract:This paper considers the complexity and properties of KLM-style preferential reasoning in the setting of propositional logic with team semantics and dependence atoms, also known as propositional dependence logic. Preferential team-based reasoning is shown to be cumulative, yet violates System~P. We give intuitive conditions that fully characterise those cases where preferential propositional dependence logic satisfies System~P. We show that these characterisations do, surprisingly, not carry over to preferential team-based propositional logic. Furthermore, we show how classical entailment and dependence logic entailment can be expressed in terms of non-trivial preferential models. Finally, we present the complexity of preferential team-based reasoning for two natural representations. This includes novel complexity results for classical (non-team-based) preferential reasoning.
Abstract:Abstract argumentation is a popular toolkit for modeling, evaluating, and comparing arguments. Relationships between arguments are specified in argumentation frameworks (AFs), and conditions are placed on sets (extensions) of arguments that allow AFs to be evaluated. For more expressiveness, AFs are augmented with \emph{acceptance conditions} on directly interacting arguments or a constraint on the admissible sets of arguments, resulting in dialectic frameworks or constrained argumentation frameworks. In this paper, we consider flexible conditions for \emph{rejecting} an argument from an extension, which we call rejection conditions (RCs). On the technical level, we associate each argument with a specific logic program. We analyze the resulting complexity, including the structural parameter treewidth. Rejection AFs are highly expressive, giving rise to natural problems on higher levels of the polynomial hierarchy.
Abstract:Logic-based argumentation is a well-established formalism modelling nonmonotonic reasoning. It has been playing a major role in AI for decades, now. Informally, a set of formulas is the support for a given claim if it is consistent, subset-minimal, and implies the claim. In such a case, the pair of the support and the claim together is called an argument. In this paper, we study the propositional variants of the following three computational tasks studied in argumentation: ARG (exists a support for a given claim with respect to a given set of formulas), ARG-Check (is a given set a support for a given claim), and ARG-Rel (similarly as ARG plus requiring an additionally given formula to be contained in the support). ARG-Check is complete for the complexity class DP, and the other two problems are known to be complete for the second level of the polynomial hierarchy (Parson et al., J. Log. Comput., 2003) and, accordingly, are highly intractable. Analyzing the reason for this intractability, we perform a two-dimensional classification: first, we consider all possible propositional fragments of the problem within Schaefer's framework (STOC 1978), and then study different parameterizations for each of the fragment. We identify a list of reasonable structural parameters (size of the claim, support, knowledge-base) that are connected to the aforementioned decision problems. Eventually, we thoroughly draw a fine border of parameterized intractability for each of the problems showing where the problems are fixed-parameter tractable and when this exactly stops. Surprisingly, several cases are of very high intractability (paraNP and beyond).
Abstract:In this paper, we consider counting and projected model counting of extensions in abstract argumentation for various semantics. When asking for projected counts we are interested in counting the number of extensions of a given argumentation framework while multiple extensions that are identical when restricted to the projected arguments count as only one projected extension. We establish classical complexity results and parameterized complexity results when the problems are parameterized by treewidth of the undirected argumentation graph. To obtain upper bounds for counting projected extensions, we introduce novel algorithms that exploit small treewidth of the undirected argumentation graph of the input instance by dynamic programming (DP). Our algorithms run in time double or triple exponential in the treewidth depending on the considered semantics. Finally, we take the exponential time hypothesis (ETH) into account and establish lower bounds of bounded treewidth algorithms for counting extensions and projected extension.
Abstract:In this paper, we introduce a notion of backdoors to Reiter's propositional default logic and study structural properties of it. Also we consider the problems of backdoor detection (parameterised by the solution size) as well as backdoor evaluation (parameterised by the size of the given backdoor), for various kinds of target classes (cnf, horn, krom, monotone, identity). We show that backdoor detection is fixed-parameter tractable for the considered target classes, and backdoor evaluation is either fixed-parameter tractable, in para-DP2 , or in para-NP, depending on the target class.
Abstract:We investigate the application of Courcelle's Theorem and the logspace version of Elberfeld etal. in the context of the implication problem for propositional sets of formulae, the extension existence problem for default logic, as well as the expansion existence problem for autoepistemic logic and obtain fixed-parameter time and space efficient algorithms for these problems. On the other hand, we exhibit, for each of the above problems, families of instances of a very simple structure that, for a wide range of different parameterizations, do not have efficient fixed-parameter algorithms (even in the sense of the large class XPnu), unless P=NP.