Abstract:This paper considers the complexity and properties of KLM-style preferential reasoning in the setting of propositional logic with team semantics and dependence atoms, also known as propositional dependence logic. Preferential team-based reasoning is shown to be cumulative, yet violates System~P. We give intuitive conditions that fully characterise those cases where preferential propositional dependence logic satisfies System~P. We show that these characterisations do, surprisingly, not carry over to preferential team-based propositional logic. Furthermore, we show how classical entailment and dependence logic entailment can be expressed in terms of non-trivial preferential models. Finally, we present the complexity of preferential team-based reasoning for two natural representations. This includes novel complexity results for classical (non-team-based) preferential reasoning.
Abstract:This paper considers KLM-style preferential non-monotonic reasoning in the setting of propositional team semantics. We show that team-based propositional logics naturally give rise to cumulative non-monotonic entailment relations. Motivated by the non-classical interpretation of disjunction in team semantics, we give a precise characterization for preferential models for propositional dependence logic satisfying all of System P postulates. Furthermore, we show how classical entailment and dependence logic entailment can be expressed in terms of non-trivial preferential models.
Abstract:We study the complexity of the problem of training neural networks defined via various activation functions. The training problem is known to be existsR-complete with respect to linear activation functions and the ReLU activation function. We consider the complexity of the problem with respect to the sigmoid activation function and other effectively continuous functions. We show that these training problems are polynomial-time many-one bireducible to the existential theory of the reals extended with the corresponding activation functions. In particular, we establish that the sigmoid activation function leads to the existential theory of the reals with the exponential function. It is thus open, and equivalent with the decidability of the existential theory of the reals with the exponential function, whether training neural networks using the sigmoid activation function is algorithmically solvable. In contrast, we obtain that the training problem is undecidable if sinusoidal activation functions are considered. Finally, we obtain general upper bounds for the complexity of the training problem in the form of low levels of the arithmetical hierarchy.
Abstract:We present a complete finite axiomatization of the unrestricted implication problem for inclusion and conditional independence atoms in the context of dependence logic. For databases, our result implies a finite axiomatization of the unrestricted implication problem for inclusion, functional, and embedded multivalued dependencies in the unirelational case.