Abstract:This study investigates the application of Riemannian geometry-based methods for brain decoding using invasive electrophysiological recordings. Although previously employed in non-invasive, the utility of Riemannian geometry for invasive datasets, which are typically smaller and scarcer, remains less explored. Here, we propose a Minimum Distance to Mean (MDM) classifier using a Riemannian geometry approach based on covariance matrices extracted from intracortical Local Field Potential (LFP) recordings across various regions during different brain state dynamics. For benchmarking, we evaluated the performance of our approach against Convolutional Neural Networks (CNNs) and Euclidean MDM classifiers. Our results indicate that the Riemannian geometry-based classification not only achieves a superior mean F1 macro-averaged score across different channel configurations but also requires up to two orders of magnitude less computational training time. Additionally, the geometric framework reveals distinct spatial contributions of brain regions across varying brain states, suggesting a state-dependent organization that traditional time series-based methods often fail to capture. Our findings align with previous studies supporting the efficacy of geometry-based methods and extending their application to invasive brain recordings, highlighting their potential for broader clinical use, such as brain computer interface applications.
Abstract:The study of brain states, ranging from highly synchronous to asynchronous neuronal patterns like the sleep-wake cycle, is fundamental for assessing the brain's spatiotemporal dynamics and their close connection to behavior. However, the development of new techniques to accurately identify them still remains a challenge, as these are often compromised by the presence of noise, artifacts, and suboptimal recording quality. In this study, we propose a two-stage computational framework combining Hopfield Networks for artifact data preprocessing with Convolutional Neural Networks (CNNs) for classification of brain states in rat neural recordings under different levels of anesthesia. To evaluate the robustness of our framework, we deliberately introduced noise artifacts into the neural recordings. We evaluated our hybrid Hopfield-CNN pipeline by benchmarking it against two comparative models: a standalone CNN handling the same noisy inputs, and another CNN trained and tested on artifact-free data. Performance across various levels of data compression and noise intensities showed that our framework can effectively mitigate artifacts, allowing the model to reach parity with the clean-data CNN at lower noise levels. Although this study mainly benefits small-scale experiments, the findings highlight the necessity for advanced deep learning and Hopfield Network models to improve scalability and robustness in diverse real-world settings.