Abstract:Clinical trials play an important role in cancer care and research, yet participation rates remain low. We developed MSK-MATCH (Memorial Sloan Kettering Multi-Agent Trial Coordination Hub), an AI system for automated eligibility screening from clinical text. MSK-MATCH integrates a large language model with a curated oncology trial knowledge base and retrieval-augmented architecture providing explanations for all AI predictions grounded in source text. In a retrospective dataset of 88,518 clinical documents from 731 patients across six breast cancer trials, MSK-MATCH automatically resolved 61.9% of cases and triaged 38.1% for human review. This AI-assisted workflow achieved 98.6% accuracy, 98.4% sensitivity, and 98.7% specificity for patient-level eligibility classification, matching or exceeding performance of the human-only and AI-only comparisons. For the triaged cases requiring manual review, prepopulating eligibility screens with AI-generated explanations reduced screening time from 20 minutes to 43 seconds at an average cost of $0.96 per patient-trial pair.




Abstract:Equivariant Graph Neural Networks (GNNs) that incorporate E(3) symmetry have achieved significant success in various scientific applications. As one of the most successful models, EGNN leverages a simple scalarization technique to perform equivariant message passing over only Cartesian vectors (i.e., 1st-degree steerable vectors), enjoying greater efficiency and efficacy compared to equivariant GNNs using higher-degree steerable vectors. This success suggests that higher-degree representations might be unnecessary. In this paper, we disprove this hypothesis by exploring the expressivity of equivariant GNNs on symmetric structures, including $k$-fold rotations and regular polyhedra. We theoretically demonstrate that equivariant GNNs will always degenerate to a zero function if the degree of the output representations is fixed to 1 or other specific values. Based on this theoretical insight, we propose HEGNN, a high-degree version of EGNN to increase the expressivity by incorporating high-degree steerable vectors while maintaining EGNN's efficiency through the scalarization trick. Our extensive experiments demonstrate that HEGNN not only aligns with our theoretical analyses on toy datasets consisting of symmetric structures, but also shows substantial improvements on more complicated datasets such as $N$-body and MD17. Our theoretical findings and empirical results potentially open up new possibilities for the research of equivariant GNNs.