Abstract:Training fall detection systems is challenging due to the scarcity of real-world fall data, particularly from elderly individuals. To address this, we explore the potential of Large Language Models (LLMs) for generating synthetic fall data. This study evaluates text-to-motion (T2M, SATO, ParCo) and text-to-text models (GPT4o, GPT4, Gemini) in simulating realistic fall scenarios. We generate synthetic datasets and integrate them with four real-world baseline datasets to assess their impact on fall detection performance using a Long Short-Term Memory (LSTM) model. Additionally, we compare LLM-generated synthetic data with a diffusion-based method to evaluate their alignment with real accelerometer distributions. Results indicate that dataset characteristics significantly influence the effectiveness of synthetic data, with LLM-generated data performing best in low-frequency settings (e.g., 20Hz) while showing instability in high-frequency datasets (e.g., 200Hz). While text-to-motion models produce more realistic biomechanical data than text-to-text models, their impact on fall detection varies. Diffusion-based synthetic data demonstrates the closest alignment to real data but does not consistently enhance model performance. An ablation study further confirms that the effectiveness of synthetic data depends on sensor placement and fall representation. These findings provide insights into optimizing synthetic data generation for fall detection models.
Abstract:The combination of increased life expectancy and falling birth rates is resulting in an aging population. Wearable Sensor-based Human Activity Recognition (WSHAR) emerges as a promising assistive technology to support the daily lives of older individuals, unlocking vast potential for human-centric applications. However, recent surveys in WSHAR have been limited, focusing either solely on deep learning approaches or on a single sensor modality. In real life, our human interact with the world in a multi-sensory way, where diverse information sources are intricately processed and interpreted to accomplish a complex and unified sensing system. To give machines similar intelligence, multimodal machine learning, which merges data from various sources, has become a popular research area with recent advancements. In this study, we present a comprehensive survey from a novel perspective on how to leverage multimodal learning to WSHAR domain for newcomers and researchers. We begin by presenting the recent sensor modalities as well as deep learning approaches in HAR. Subsequently, we explore the techniques used in present multimodal systems for WSHAR. This includes inter-multimodal systems which utilize sensor modalities from both visual and non-visual systems and intra-multimodal systems that simply take modalities from non-visual systems. After that, we focus on current multimodal learning approaches that have applied to solve some of the challenges existing in WSHAR. Specifically, we make extra efforts by connecting the existing multimodal literature from other domains, such as computer vision and natural language processing, with current WSHAR area. Finally, we identify the corresponding challenges and potential research direction in current WSHAR area for further improvement.
Abstract:Wearable sensor-based Human Action Recognition (HAR) has achieved remarkable success recently. However, the accuracy performance of wearable sensor-based HAR is still far behind the ones from the visual modalities-based system (i.e., RGB video, skeleton, and depth). Diverse input modalities can provide complementary cues and thus improve the accuracy performance of HAR, but how to take advantage of multi-modal data on wearable sensor-based HAR has rarely been explored. Currently, wearable devices, i.e., smartwatches, can only capture limited kinds of non-visual modality data. This hinders the multi-modal HAR association as it is unable to simultaneously use both visual and non-visual modality data. Another major challenge lies in how to efficiently utilize multimodal data on wearable devices with their limited computation resources. In this work, we propose a novel Progressive Skeleton-to-sensor Knowledge Distillation (PSKD) model which utilizes only time-series data, i.e., accelerometer data, from a smartwatch for solving the wearable sensor-based HAR problem. Specifically, we construct multiple teacher models using data from both teacher (human skeleton sequence) and student (time-series accelerometer data) modalities. In addition, we propose an effective progressive learning scheme to eliminate the performance gap between teacher and student models. We also designed a novel loss function called Adaptive-Confidence Semantic (ACS), to allow the student model to adaptively select either one of the teacher models or the ground-truth label it needs to mimic. To demonstrate the effectiveness of our proposed PSKD method, we conduct extensive experiments on Berkeley-MHAD, UTD-MHAD, and MMAct datasets. The results confirm that the proposed PSKD method has competitive performance compared to the previous mono sensor-based HAR methods.