Abstract:Conversations are usually structured by roles -- who is speaking, who's being addressed, and who's listening -- and unfold in threads that break with changes in speaker floor or topical focus. While large language models (LLMs) have shown incredible capabilities in dialogue and reasoning, their ability to understand fine-grained conversational structure, especially in multi-modal, multi-party settings, remains underexplored. To address this gap, we introduce a suite of tasks focused on conversational role attribution (speaker, addressees, side-participants) and conversation threading (utterance linking and clustering), drawing on conversation analysis and sociolinguistics. To support those tasks, we present a human annotated dataset of 4,398 annotations for speakers and reply-to relationship, 5,755 addressees, and 3,142 side-participants. We evaluate popular audio-visual LLMs and vision-language models on our dataset, and our experimental results suggest that multimodal conversational structure understanding remains challenging. The most performant audio-visual LLM outperforms all vision-language models across all metrics, especially in speaker and addressee recognition. However, its performance drops significantly when conversation participants are anonymized. The number of conversation participants in a clip is the strongest negative predictor of role-attribution performance, while acoustic clarity (measured by pitch and spectral centroid) and detected face coverage yield positive associations. We hope this work lays the groundwork for future evaluation and development of multimodal LLMs that can reason more effectively about conversation structure.
Abstract:Television is often seen as a site for subcultural identification and subversive fantasy, including in queer cultures. How might we measure subversion, or the degree to which the depiction of social relationship between a dyad (e.g. two characters who are colleagues) deviates from its typical representation on TV? To explore this question, we introduce the task of stereotypic relationship extraction. Built on cognitive stylistics, linguistic anthropology, and dialogue relation extraction, in this paper, we attempt to model the cognitive process of stereotyping TV characters in dialogic interactions. Given a dyad, we want to predict: what social relationship do the speakers exhibit through their words? Subversion is then characterized by the discrepancy between the distribution of the model's predictions and the ground truth labels. To demonstrate the usefulness of this task and gesture at a methodological intervention, we enclose four case studies to characterize the representation of queer relationalities in the Big Bang Theory, Frasier, and Gilmore Girls, as we explore the suspicious and reparative modes of reading with our computational methods.