Abstract:Networked control systems (NCSs) are vulnerable to faults and hidden malfunctions in communication channels that can degrade performance or even destabilize the closed loop. Classical metrics in robust control and fault detection typically treat impact and detectability separately, whereas the output-to-output gain (OOG) provides a unified measure of both. While existing results have been limited to linear systems, this paper extends the OOG framework to nonlinear NCSs with quadratically constrained nonlinearities, considering false-injection attacks that can also manipulate sensor measurements through nonlinear transformations. Specifically, we provide computationally efficient linear matrix inequality conditions and complementary frequency-domain tests that yield explicit upper bounds on the OOG of this class of nonlinear systems. Furthermore, we derive frequency-domain conditions for absolute stability of closed-loop systems, generalizing the Yakubovich quadratic criterion.




Abstract:Federated Learning (FL) enables collaborative model training across decentralized devices without sharing raw data, but it remains vulnerable to poisoning attacks that compromise model integrity. Existing defenses often rely on external datasets or predefined heuristics (e.g. number of malicious clients), limiting their effectiveness and scalability. To address these limitations, we propose a privacy-preserving defense framework that leverages a Conditional Generative Adversarial Network (cGAN) to generate synthetic data at the server for authenticating client updates, eliminating the need for external datasets. Our framework is scalable, adaptive, and seamlessly integrates into FL workflows. Extensive experiments on benchmark datasets demonstrate its robust performance against a variety of poisoning attacks, achieving high True Positive Rate (TPR) and True Negative Rate (TNR) of malicious and benign clients, respectively, while maintaining model accuracy. The proposed framework offers a practical and effective solution for securing federated learning systems.