Abstract:We present an analysis of mutual intelligibility in related languages applied for languages in the Romance family. We introduce a novel computational metric for estimating intelligibility based on lexical similarity using surface and semantic similarity of related words, and use it to measure mutual intelligibility for the five main Romance languages (French, Italian, Portuguese, Spanish, and Romanian), and compare results using both the orthographic and phonetic forms of words as well as different parallel corpora and vectorial models of word meaning representation. The obtained intelligibility scores confirm intuitions related to intelligibility asymmetry across languages and significantly correlate with results of cloze tests in human experiments.
Abstract:The following paper introduces a general linguistic creativity test for humans and Large Language Models (LLMs). The test consists of various tasks aimed at assessing their ability to generate new original words and phrases based on word formation processes (derivation and compounding) and on metaphorical language use. We administered the test to 24 humans and to an equal number of LLMs, and we automatically evaluated their answers using OCSAI tool for three criteria: Originality, Elaboration, and Flexibility. The results show that LLMs not only outperformed humans in all the assessed criteria, but did better in six out of the eight test tasks. We then computed the uniqueness of the individual answers, which showed some minor differences between humans and LLMs. Finally, we performed a short manual analysis of the dataset, which revealed that humans are more inclined towards E(extending)-creativity, while LLMs favor F(ixed)-creativity.