Abstract:Detecting Distributed Denial of Service (DDoS) attacks in Multi-Environment (M-En) networks presents significant challenges due to diverse malicious traffic patterns and the evolving nature of cyber threats. Existing AI-based detection systems struggle to adapt to new attack strategies and lack real-time attack detection capabilities with high accuracy and efficiency. This study proposes an online, continuous learning methodology for DDoS detection in M-En networks, enabling continuous model updates and real-time adaptation to emerging threats, including zero-day attacks. First, we develop a unique M-En network dataset by setting up a realistic, real-time simulation using the NS-3 tool, incorporating both victim and bot devices. DDoS attacks with varying packet sizes are simulated using the DDoSim application across IoT and traditional IP-based environments under M-En network criteria. Our approach employs a multi-level framework (MULTI-LF) featuring two machine learning models: a lightweight Model 1 (M1) trained on a selective, critical packet dataset for fast and efficient initial detection, and a more complex, highly accurate Model 2 (M2) trained on extensive data. When M1 exhibits low confidence in its predictions, the decision is escalated to M2 for verification and potential fine-tuning of M1 using insights from M2. If both models demonstrate low confidence, the system flags the incident for human intervention, facilitating model updates with human-verified categories to enhance adaptability to unseen attack patterns. We validate the MULTI-LF through real-world simulations, demonstrating superior classification accuracy of 0.999 and low prediction latency of 0.866 seconds compared to established baselines. Furthermore, we evaluate performance in terms of memory usage (3.632 MB) and CPU utilization (10.05%) in real-time scenarios.
Abstract:Network Traffic Classification (NTC) has become an important component in a wide variety of network management operations, e.g., Quality of Service (QoS) provisioning and security purposes. Machine Learning (ML) algorithms as a common approach for NTC methods can achieve reasonable accuracy and handle encrypted traffic. However, ML-based NTC techniques suffer from the shortage of labeled traffic data which is the case in many real-world applications. This study investigates the applicability of an active form of ML, called Active Learning (AL), which reduces the need for a high number of labeled examples by actively choosing the instances that should be labeled. The study first provides an overview of NTC and its fundamental challenges along with surveying the literature in the field of using ML techniques in NTC. Then, it introduces the concepts of AL, discusses it in the context of NTC, and review the literature in this field. Further, challenges and open issues in the use of AL for NTC are discussed. Additionally, as a technical survey, some experiments are conducted to show the broad applicability of AL in NTC. The simulation results show that AL can achieve high accuracy with a small amount of data.