Abstract:Modeling user behavior is critical across many industries where understanding preferences, intent, or decisions informs personalization, targeting, and strategic outcomes. Surveys have long served as a classical mechanism for collecting such behavioral data due to their interpretability, structure, and ease of deployment. However, surveys alone are inherently limited by user fatigue, incomplete responses, and practical constraints on their length making them insufficient for capturing user behavior. In this work, we present LANTERN (Late-Attentive Network for Enriched Response Modeling), a modular architecture for modeling user behavior by fusing adaptive survey responses with supplemental contextual signals. We demonstrate the architectural value of maintaining survey primacy through selective gating, residual connections and late fusion via cross-attention, treating survey data as the primary signal while incorporating external modalities only when relevant. LANTERN outperforms strong survey-only baselines in multi-label prediction of survey responses. We further investigate threshold sensitivity and the benefits of selective modality reliance through ablation and rare/frequent attribute analysis. LANTERN's modularity supports scalable integration of new encoders and evolving datasets. This work provides a practical and extensible blueprint for behavior modeling in survey-centric applications.
Abstract:Grokking is a phenomenon where a model trained on an algorithmic task first overfits but, then, after a large amount of additional training, undergoes a phase transition to generalize perfectly. We empirically study the internal structure of networks undergoing grokking on the sparse parity task, and find that the grokking phase transition corresponds to the emergence of a sparse subnetwork that dominates model predictions. On an optimization level, we find that this subnetwork arises when a small subset of neurons undergoes rapid norm growth, whereas the other neurons in the network decay slowly in norm. Thus, we suggest that the grokking phase transition can be understood to emerge from competition of two largely distinct subnetworks: a dense one that dominates before the transition and generalizes poorly, and a sparse one that dominates afterwards.