Abstract:Drone light shows have emerged as a popular form of entertainment in recent years. However, several high-profile incidents involving large-scale drone failures -- where multiple drones simultaneously fall from the sky -- have raised safety and reliability concerns. To ensure robustness, we propose a drone parking algorithm designed specifically for multiple drone failures in drone light shows, aimed at mitigating the risk of cascading collisions by drone evacuation and enabling rapid recovery from failures by leveraging strategically placed hidden drones. Our algorithm integrates a Social LSTM model with attention mechanisms to predict the trajectories of failing drones and compute near-optimal evacuation paths that minimize the likelihood of surviving drones being hit by fallen drones. In the recovery node, our system deploys hidden drones (operating with their LED lights turned off) to replace failed drones so that the drone light show can continue. Our experiments showed that our approach can greatly increase the robustness of a multi-drone system by leveraging deep learning to predict the trajectories of fallen drones.
Abstract:The integration of machine learning (ML) into cyber-physical systems (CPS) offers significant benefits, including enhanced efficiency, predictive capabilities, real-time responsiveness, and the enabling of autonomous operations. This convergence has accelerated the development and deployment of a range of real-world applications, such as autonomous vehicles, delivery drones, service robots, and telemedicine procedures. However, the software development life cycle (SDLC) for AI-infused CPS diverges significantly from traditional approaches, featuring data and learning as two critical components. Existing verification and validation techniques are often inadequate for these new paradigms. In this study, we pinpoint the main challenges in ensuring formal safety for learningenabled CPS.We begin by examining testing as the most pragmatic method for verification and validation, summarizing the current state-of-the-art methodologies. Recognizing the limitations in current testing approaches to provide formal safety guarantees, we propose a roadmap to transition from foundational probabilistic testing to a more rigorous approach capable of delivering formal assurance.