Abstract:Objectives: High-grade serous ovarian carcinoma (HGSOC) is typically diagnosed at an advanced stage with extensive peritoneal metastases, making treatment challenging. Neoadjuvant chemotherapy (NACT) is often used to reduce tumor burden before surgery, but about 40% of patients show limited response. Radiomics, combined with machine learning (ML), offers a promising non-invasive method for predicting NACT response by analyzing computed tomography (CT) imaging data. This study aimed to improve response prediction in HGSOC patients undergoing NACT by integration different feature selection methods. Materials and methods: A framework for selecting robust radiomics features was introduced by employing an automated randomisation algorithm to mimic inter-observer variability, ensuring a balance between feature robustness and prediction accuracy. Four response metrics were used: chemotherapy response score (CRS), RECIST, volume reduction (VolR), and diameter reduction (DiaR). Lesions in different anatomical sites were studied. Pre- and post-NACT CT scans were used for feature extraction and model training on one cohort, and an independent cohort was used for external testing. Results: The best prediction performance was achieved using all lesions combined for VolR prediction, with an AUC of 0.83. Omental lesions provided the best results for CRS prediction (AUC 0.77), while pelvic lesions performed best for DiaR (AUC 0.76). Conclusion: The integration of robustness into the feature selection processes ensures the development of reliable models and thus facilitates the implementation of the radiomics models in clinical applications for HGSOC patients. Future work should explore further applications of radiomics in ovarian cancer, particularly in real-time clinical settings.
Abstract:Background: The 2022 update of the Ovarian-Adnexal Reporting and Data System (O-RADS) ultrasound classification refines risk stratification for adnexal lesions, yet human interpretation remains subject to variability and conservative thresholds. Concurrently, deep learning (DL) models have demonstrated promise in image-based ovarian lesion characterization. This study evaluates radiologist performance applying O-RADS v2022, compares it to leading convolutional neural network (CNN) and Vision Transformer (ViT) models, and investigates the diagnostic gains achieved by hybrid human-AI frameworks. Methods: In this single-center, retrospective cohort study, a total of 512 adnexal mass images from 227 patients (110 with at least one malignant cyst) were included. Sixteen DL models, including DenseNets, EfficientNets, ResNets, VGGs, Xception, and ViTs, were trained and validated. A hybrid model integrating radiologist O-RADS scores with DL-predicted probabilities was also built for each scheme. Results: Radiologist-only O-RADS assessment achieved an AUC of 0.683 and an overall accuracy of 68.0%. CNN models yielded AUCs of 0.620 to 0.908 and accuracies of 59.2% to 86.4%, while ViT16-384 reached the best performance, with an AUC of 0.941 and an accuracy of 87.4%. Hybrid human-AI frameworks further significantly enhanced the performance of CNN models; however, the improvement for ViT models was not statistically significant (P-value >0.05). Conclusions: DL models markedly outperform radiologist-only O-RADS v2022 assessment, and the integration of expert scores with AI yields the highest diagnostic accuracy and discrimination. Hybrid human-AI paradigms hold substantial potential to standardize pelvic ultrasound interpretation, reduce false positives, and improve detection of high-risk lesions.