Abstract:Traditional Business Process Management (BPM) struggles with rigidity, opacity, and scalability in dynamic environments while emerging Large Language Models (LLMs) present transformative opportunities alongside risks. This paper explores four real-world use cases that demonstrate how LLMs, augmented with trustworthy process intelligence, redefine process modeling, prediction, and automation. Grounded in early-stage research projects with industrial partners, the work spans manufacturing, modeling, life-science, and design processes, addressing domain-specific challenges through human-AI collaboration. In manufacturing, an LLM-driven framework integrates uncertainty-aware explainable Machine Learning (ML) with interactive dialogues, transforming opaque predictions into auditable workflows. For process modeling, conversational interfaces democratize BPMN design. Pharmacovigilance agents automate drug safety monitoring via knowledge-graph-augmented LLMs. Finally, sustainable textile design employs multi-agent systems to navigate regulatory and environmental trade-offs. We intend to examine tensions between transparency and efficiency, generalization and specialization, and human agency versus automation. By mapping these trade-offs, we advocate for context-sensitive integration prioritizing domain needs, stakeholder values, and iterative human-in-the-loop workflows over universal solutions. This work provides actionable insights for researchers and practitioners aiming to operationalize LLMs in critical BPM environments.
Abstract:AI Planning, Machine Learning and Process Mining have so far developed into separate research fields. At the same time, many interesting concepts and insights have been gained at the intersection of these areas in recent years. For example, the behavior of future processes is now comprehensively predicted with the aid of Machine Learning. For the practical application of these findings, however, it is also necessary not only to know the expected course, but also to give recommendations and hints for the achievement of goals, i.e. to carry out comprehensive process planning. At the same time, an adequate integration of the aforementioned research fields is still lacking. In this article, we present a research project in which researchers from the AI and BPM field work jointly together. Therefore, we discuss the overall research problem, the relevant fields of research and our overall research framework to automatically derive process models from executional process data, derive subsequent planning problems and conduct automated planning in order to adaptively plan and execute business processes using real-time forecasts.