Abstract:Scaling distributed training of Large Language Models (LLMs) requires not only algorithmic advances but also efficient utilization of heterogeneous hardware resources. While existing methods such as DiLoCo have demonstrated promising results, they often fail to fully exploit computational clusters under dynamic workloads. To address this limitation, we propose a three-stage method that combines Multi-Instance Training (MIT), Adaptive Batched DiLoCo, and switch mode mechanism. MIT allows individual nodes to run multiple lightweight training streams with different model instances in parallel and merge them to combine knowledge, increasing throughput and reducing idle time. Adaptive Batched DiLoCo dynamically adjusts local batch sizes to balance computation and communication, substantially lowering synchronization delays. Switch mode further stabilizes training by seamlessly introducing gradient accumulation once adaptive batch sizes grow beyond hardware-friendly limits. Together, these innovations improve both convergence speed and system efficiency. We also provide a theoretical estimate of the number of communications required for the full convergence of a model trained using our method.
Abstract:Recent Large Language Model (LLM)-based AutoML systems demonstrate impressive capabilities but face significant limitations such as constrained exploration strategies and a severe execution bottleneck. Exploration is hindered by one-shot methods lacking diversity and Monte Carlo Tree Search (MCTS) approaches that fail to recombine strong partial solutions. The execution bottleneck arises from lengthy code validation cycles that stifle iterative refinement. To overcome these challenges, we introduce KompeteAI, a novel AutoML framework with dynamic solution space exploration. Unlike previous MCTS methods that treat ideas in isolation, KompeteAI introduces a merging stage that composes top candidates. We further expand the hypothesis space by integrating Retrieval-Augmented Generation (RAG), sourcing ideas from Kaggle notebooks and arXiv papers to incorporate real-world strategies. KompeteAI also addresses the execution bottleneck via a predictive scoring model and an accelerated debugging method, assessing solution potential using early stage metrics to avoid costly full-code execution. This approach accelerates pipeline evaluation 6.9 times. KompeteAI outperforms leading methods (e.g., RD-agent, AIDE, and Ml-Master) by an average of 3\% on the primary AutoML benchmark, MLE-Bench. Additionally, we propose Kompete-bench to address limitations in MLE-Bench, where KompeteAI also achieves state-of-the-art results
Abstract:The growing popularity of AI optimization problems involving severely corrupted data has increased the demand for methods capable of handling heavy-tailed noise, i.e., noise with bounded $\kappa$-th moment, $\kappa \in (1,2]$. For the widely used clipping technique, effectiveness heavily depends on the careful tuning of clipping levels throughout training. In this paper, we demonstrate that using only the sign of the input, without introducing additional hyperparameters, is sufficient to cope with heavy-tailed noise effectively. For smooth non-convex functions, we prove that SignSGD achieves optimal sample complexity $\tilde{O}\left(\varepsilon^{-\frac{3\kappa - 2}{\kappa - 1}}\right)$ with high probability for attaining an average gradient norm accuracy of $\varepsilon$. Under the assumption of symmetric noise, we use SignSGD with Majority Voting to extend this bound to the distributed optimization or reduce the sample complexity to $\tilde{O}(\varepsilon^{-4})$ in the case of a single worker with arbitrary parameters. Furthermore, we explore the application of the sign operator in zeroth-order optimization with an oracle that can only compare function values at two different points. We propose a novel method, MajorityVote-CompsSGD, and provide the first-known high-probability bound $\tilde{O}(\varepsilon^{-6})$ for the number of comparisons under symmetric noise assumption. Our theoretical findings are supported by the superior performance of sign-based methods in training Large Language Models.
Abstract:We present a novel gradient-free algorithm to solve a convex stochastic optimization problem, such as those encountered in medicine, physics, and machine learning (e.g., adversarial multi-armed bandit problem), where the objective function can only be computed through numerical simulation, either as the result of a real experiment or as feedback given by the function evaluations from an adversary. Thus we suppose that only a black-box access to the function values of the objective is available, possibly corrupted by adversarial noise: deterministic or stochastic. The noisy setup can arise naturally from modeling randomness within a simulation or by computer discretization, or when exact values of function are forbidden due to privacy issues, or when solving non-convex problems as convex ones with an inexact function oracle. By exploiting higher-order smoothness, fulfilled, e.g., in logistic regression, we improve the performance of zero-order methods developed under the assumption of classical smoothness (or having a Lipschitz gradient). The proposed algorithm enjoys optimal oracle complexity and is designed under an overparameterization setup, i.e., when the number of model parameters is much larger than the size of the training dataset. Overparametrized models fit to the training data perfectly while also having good generalization and outperforming underparameterized models on unseen data. We provide convergence guarantees for the proposed algorithm under both types of noise. Moreover, we estimate the maximum permissible adversarial noise level that maintains the desired accuracy in the Euclidean setup, and then we extend our results to a non-Euclidean setup. Our theoretical results are verified on the logistic regression problem.
Abstract:Recommender systems aim to estimate the dynamically changing user preferences and sequential dependencies between historical user behaviour and metadata. Although transformer-based models have proven to be effective in sequential recommendations, their state growth is proportional to the length of the sequence that is being processed, which makes them expensive in terms of memory and inference costs. Our research focused on three promising directions in sequential recommendations: enhancing speed through the use of State Space Models (SSM), as they can achieve SOTA results in the sequential recommendations domain with lower latency, memory, and inference costs, as proposed by arXiv:2403.03900 improving the quality of recommendations with Large Language Models (LLMs) via Monolithic Preference Optimization without Reference Model (ORPO); and implementing adaptive batch- and step-size algorithms to reduce costs and accelerate training processes.
Abstract:Methods with adaptive stepsizes, such as AdaGrad and Adam, are essential for training modern Deep Learning models, especially Large Language Models. Typically, the noise in the stochastic gradients is heavy-tailed for the later ones. Gradient clipping provably helps to achieve good high-probability convergence for such noises. However, despite the similarity between AdaGrad/Adam and Clip-SGD, the high-probability convergence of AdaGrad/Adam has not been studied in this case. In this work, we prove that AdaGrad (and its delayed version) can have provably bad high-probability convergence if the noise is heavy-tailed. To fix this issue, we propose a new version of AdaGrad called Clip-RAdaGradD (Clipped Reweighted AdaGrad with Delay) and prove its high-probability convergence bounds with polylogarithmic dependence on the confidence level for smooth convex/non-convex stochastic optimization with heavy-tailed noise. Our empirical evaluations, including NLP model fine-tuning, highlight the superiority of clipped versions of AdaGrad/Adam in handling the heavy-tailed noise.
Abstract:The rapid development of machine learning and deep learning has introduced increasingly complex optimization challenges that must be addressed. Indeed, training modern, advanced models has become difficult to implement without leveraging multiple computing nodes in a distributed environment. Distributed optimization is also fundamental to emerging fields such as federated learning. Specifically, there is a need to organize the training process to minimize the time lost due to communication. A widely used and extensively researched technique to mitigate the communication bottleneck involves performing local training before communication. This approach is the focus of our paper. Concurrently, adaptive methods that incorporate scaling, notably led by Adam, have gained significant popularity in recent years. Therefore, this paper aims to merge the local training technique with the adaptive approach to develop efficient distributed learning methods. We consider the classical Local SGD method and enhance it with a scaling feature. A crucial aspect is that the scaling is described generically, allowing us to analyze various approaches, including Adam, RMSProp, and OASIS, in a unified manner. In addition to theoretical analysis, we validate the performance of our methods in practice by training a neural network.
Abstract:We propose a novel architecture and method of explainable classification with Concept Bottleneck Models (CBMs). While SOTA approaches to Image Classification task work as a black box, there is a growing demand for models that would provide interpreted results. Such a models often learn to predict the distribution over class labels using additional description of this target instances, called concepts. However, existing Bottleneck methods have a number of limitations: their accuracy is lower than that of a standard model and CBMs require an additional set of concepts to leverage. We provide a framework for creating Concept Bottleneck Model from pre-trained multi-modal encoder and new CLIP-like architectures. By introducing a new type of layers known as Concept Bottleneck Layers, we outline three methods for training them: with $\ell_1$-loss, contrastive loss and loss function based on Gumbel-Softmax distribution (Sparse-CBM), while final FC layer is still trained with Cross-Entropy. We show a significant increase in accuracy using sparse hidden layers in CLIP-based bottleneck models. Which means that sparse representation of concepts activation vector is meaningful in Concept Bottleneck Models. Moreover, with our Concept Matrix Search algorithm we can improve CLIP predictions on complex datasets without any additional training or fine-tuning. The code is available at: https://github.com/Andron00e/SparseCBM.
Abstract:Over the several recent years, there has been a boom in development of flow matching methods for generative modeling. One intriguing property pursued by the community is the ability to learn flows with straight trajectories which realize the optimal transport (OT) displacements. Straightness is crucial for fast integration of the learned flow's paths. Unfortunately, most existing flow straightening methods are based on non-trivial iterative procedures which accumulate the error during training or exploit heuristic minibatch OT approximations. To address this issue, we develop a novel optimal flow matching approach which recovers the straight OT displacement for the quadratic cost in just one flow matching step.
Abstract:This paper presents a novel adaptation of the Stochastic Gradient Descent (SGD), termed AdaBatchGrad. This modification seamlessly integrates an adaptive step size with an adjustable batch size. An increase in batch size and a decrease in step size are well-known techniques to tighten the area of convergence of SGD and decrease its variance. A range of studies by R. Byrd and J. Nocedal introduced various testing techniques to assess the quality of mini-batch gradient approximations and choose the appropriate batch sizes at every step. Methods that utilized exact tests were observed to converge within $O(LR^2/\varepsilon)$ iterations. Conversely, inexact test implementations sometimes resulted in non-convergence and erratic performance. To address these challenges, AdaBatchGrad incorporates both adaptive batch and step sizes, enhancing the method's robustness and stability. For exact tests, our approach converges in $O(LR^2/\varepsilon)$ iterations, analogous to standard gradient descent. For inexact tests, it achieves convergence in $O(\max\lbrace LR^2/\varepsilon, \sigma^2 R^2/\varepsilon^2 \rbrace )$ iterations. This makes AdaBatchGrad markedly more robust and computationally efficient relative to prevailing methods. To substantiate the efficacy of our method, we experimentally show, how the introduction of adaptive step size and adaptive batch size gradually improves the performance of regular SGD. The results imply that AdaBatchGrad surpasses alternative methods, especially when applied to inexact tests.