Abstract:3D Gaussian splatting has emerged as an expressive scene representation for RGB-D visual SLAM, but its application to large-scale, multi-agent outdoor environments remains unexplored. Multi-agent Gaussian SLAM is a promising approach to rapid exploration and reconstruction of environments, offering scalable environment representations, but existing approaches are limited to small-scale, indoor environments. To that end, we propose Gaussian Reconstruction via Multi-Agent Dense SLAM, or GRAND-SLAM, a collaborative Gaussian splatting SLAM method that integrates i) an implicit tracking module based on local optimization over submaps and ii) an approach to inter- and intra-robot loop closure integrated into a pose-graph optimization framework. Experiments show that GRAND-SLAM provides state-of-the-art tracking performance and 28% higher PSNR than existing methods on the Replica indoor dataset, as well as 91% lower multi-agent tracking error and improved rendering over existing multi-agent methods on the large-scale, outdoor Kimera-Multi dataset.
Abstract:This paper presents Robust samplE-based coVarIance StEering (REVISE), a multi-query algorithm that generates robust belief roadmaps for dynamic systems navigating through spatially dependent disturbances modeled as a Gaussian random field. Our proposed method develops a novel robust sample-based covariance steering edge controller to safely steer a robot between state distributions, satisfying state constraints along the trajectory. Our proposed approach also incorporates an edge rewiring step into the belief roadmap construction process, which provably improves the coverage of the belief roadmap. When compared to state-of-the-art methods, REVISE improves median plan accuracy (as measured by Wasserstein distance between the actual and planned final state distribution) by 10x in multi-query planning and reduces median plan cost (as measured by the largest eigenvalue of the planned state covariance at the goal) by 2.5x in single-query planning for a 6DoF system. We will release our code at https://acl.mit.edu/REVISE/.