Abstract:The theoretical understanding of self-attention (SA) has been steadily progressing. A prominent line of work studies a class of SA layers that admit an energy function decreased by state updates. While it provides valuable insights into inherent biases in signal propagation, it often relies on idealized assumptions or additional constraints not necessarily present in standard SA. Thus, to broaden our understanding, this work aims to relax these energy constraints and provide an energy-agnostic characterization of inference dynamics by dynamical systems analysis. In more detail, we first consider relaxing the symmetry and single-head constraints traditionally required in energy-based formulations. Next, to investigate more general SA architectures capable of oscillatory dynamics without necessarily admitting an energy function, we analyze the Jacobian matrix of the state. We reveal that normalization layers effectively normalize the Jacobian's complex eigenvalues, forcing the dynamics close to a critical state. This significantly enhances inference performance. Furthermore, we utilize the Jacobian perspective to develop regularization methods for training and a pseudo-energy for monitoring inference dynamics.
Abstract:The two-stage fine-tuning (FT) method, linear probing then fine-tuning (LP-FT), consistently outperforms linear probing (LP) and FT alone in terms of accuracy for both in-distribution (ID) and out-of-distribution (OOD) data. This success is largely attributed to the preservation of pre-trained features, achieved through a near-optimal linear head obtained during LP. However, despite the widespread use of large language models, the exploration of complex architectures such as Transformers remains limited. In this paper, we analyze the training dynamics of LP-FT for classification models on the basis of the neural tangent kernel (NTK) theory. Our analysis decomposes the NTK matrix into two components, highlighting the importance of the linear head norm alongside the prediction accuracy at the start of the FT stage. We also observe a significant increase in the linear head norm during LP, stemming from training with the cross-entropy (CE) loss, which effectively minimizes feature changes. Furthermore, we find that this increased norm can adversely affect model calibration, a challenge that can be addressed by temperature scaling. Additionally, we extend our analysis with the NTK to the low-rank adaptation (LoRA) method and validate its effectiveness. Our experiments with a Transformer-based model on natural language processing tasks across multiple benchmarks confirm our theoretical analysis and demonstrate the effectiveness of LP-FT in fine-tuning language models. Code is available at https://github.com/tom4649/lp-ft_ntk.