Abstract:Transluminal minimally invasive surgery uses natural orifices and small incisions to access internal anatomical structures, promoting quicker recovery and reduced morbidity. However, navigating instruments--catheters and endoscopes--through anatomical pathways creates frictional interactions with luminal walls, risking complications such as perforation, poor haptic feedback, and instrument buckling. In this paper, we present a new approach to actively lubricate transluminal instruments and dynamically reduce friction with surrounding tissues. This approach employs ultrasonic vibrations, at the instrument surface, to generate a pressurized fluid layer at the contact interface, lubricating the interface and thereby reducing friction. We implemented this approach in a prototype catheter, which we validated under dry and liquid-lubricated conditions, across rigid and soft interfaces, and along varied anatomical curvatures. In a cardiac catheter use case, active lubrication reduced friction by up to 42% on ex-vivo porcine aorta tissue and 82% on rigid substrates, denoting its potential performance on healthy and calcified tissue, respectively. Thermal imaging confirmed that temperature at the tissue-catheter interface remained within safe limits. Additionally, the system effectively prevented buckling during catheter insertion experiment, further showcasing its potential. By minimizing injury risk and enhancing procedural stability, active lubrication can drastically enhance the safety and efficacy of transluminal interventions.
Abstract:Pipelines, vital for fluid transport, pose an important yet challenging inspection task, particularly in small, flexible biological systems, that robots have yet to master. In this study, we explored the development of an innovative robot inspired by the ovipositor of parasitic wasps to navigate and inspect pipelines. The robot features a flexible locomotion system that adapts to different tube sizes and shapes through a mechanical inflation technique. The flexible locomotion system employs a reciprocating motion, in which groups of three sliders extend and retract in a cyclic fashion. In a proof-of-principle experiment, the robot locomotion efficiency demonstrated positive linear correlation (r=0.6434) with the diameter ratio (ratio of robot diameter to tube diameter). The robot showcased a remarkable ability to traverse tubes of different sizes, shapes and payloads with an average of (70%) locomotion efficiency across all testing conditions, at varying diameter ratios (0.7-1.5). Furthermore, the mechanical inflation mechanism displayed substantial load-carrying capacity, producing considerable holding force of (13 N), equivalent to carrying a payload of approximately (5.8 Kg) inclusive the robot weight. This novel soft robotic system shows promise for inspection and navigation within tubular confined spaces, particularly in scenarios requiring adaptability to different tube shapes, sizes, and load-carrying capacities. This novel design serves as a foundation for a new class of pipeline inspection robots that exhibit versatility across various pipeline environments, potentially including biological systems.