Abstract:Indirect Prompt Injection attacks exploit the inherent limitation of Large Language Models (LLMs) to distinguish between instructions and data in their inputs. Despite numerous defense proposals, the systematic evaluation against adaptive adversaries remains limited, even when successful attacks can have wide security and privacy implications, and many real-world LLM-based applications remain vulnerable. We present the results of LLMail-Inject, a public challenge simulating a realistic scenario in which participants adaptively attempted to inject malicious instructions into emails in order to trigger unauthorized tool calls in an LLM-based email assistant. The challenge spanned multiple defense strategies, LLM architectures, and retrieval configurations, resulting in a dataset of 208,095 unique attack submissions from 839 participants. We release the challenge code, the full dataset of submissions, and our analysis demonstrating how this data can provide new insights into the instruction-data separation problem. We hope this will serve as a foundation for future research towards practical structural solutions to prompt injection.
Abstract:Understanding how adversarial conditions affect language models requires techniques that capture both global structure and local detail within high-dimensional activation spaces. We propose persistent homology (PH), a tool from topological data analysis, to systematically characterize multiscale latent space dynamics in LLMs under two distinct attack modes -- backdoor fine-tuning and indirect prompt injection. By analyzing six state-of-the-art LLMs, we show that adversarial conditions consistently compress latent topologies, reducing structural diversity at smaller scales while amplifying dominant features at coarser ones. These topological signatures are statistically robust across layers, architectures, model sizes, and align with the emergence of adversarial effects deeper in the network. To capture finer-grained mechanisms underlying these shifts, we introduce a neuron-level PH framework that quantifies how information flows and transforms within and across layers. Together, our findings demonstrate that PH offers a principled and unifying approach to interpreting representational dynamics in LLMs, particularly under distributional shift.
Abstract:Large Language Models (LLMs) are routinely used in retrieval-augmented applications to orchestrate tasks and process inputs from users and other sources. These inputs, even in a single LLM interaction, can come from a variety of sources, of varying trustworthiness and provenance. This opens the door to prompt injection attacks, where the LLM receives and acts upon instructions from supposedly data-only sources, thus deviating from the user's original instructions. We define this as task drift, and we propose to catch it by scanning and analyzing the LLM's activations. We compare the LLM's activations before and after processing the external input in order to detect whether this input caused instruction drift. We develop two probing methods and find that simply using a linear classifier can detect drift with near perfect ROC AUC on an out-of-distribution test set. We show that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions, without being trained on any of these attacks. Our setup does not require any modification of the LLM (e.g., fine-tuning) or any text generation, thus maximizing deployability and cost efficiency and avoiding reliance on unreliable model output. To foster future research on activation-based task inspection, decoding, and interpretability, we will release our large-scale TaskTracker toolkit, comprising a dataset of over 500K instances, representations from 4 SoTA language models, and inspection tools.