Abstract:Multimodal out-of-context (OOC) misinformation is misinformation that repurposes real images with unrelated or misleading captions. Detecting such misinformation is challenging because it requires resolving the context of the claim before checking for misinformation. Many current methods, including LLMs and LVLMs, do not perform this contextualization step. LLMs hallucinate in absence of context or parametric knowledge. In this work, we propose a graph-based method that evaluates the consistency between the image and the caption by constructing two graph representations: an evidence graph, derived from online textual evidence, and a claim graph, from the claim in the caption. Using graph neural networks (GNNs) to encode and compare these representations, our framework then evaluates the truthfulness of image-caption pairs. We create datasets for our graph-based method, evaluate and compare our baseline model against popular LLMs on the misinformation detection task. Our method scores $93.05\%$ detection accuracy on the evaluation set and outperforms the second-best performing method (an LLM) by $2.82\%$, making a case for smaller and task-specific methods.
Abstract:Climate change has increased the intensity, frequency, and duration of extreme weather events and natural disasters across the world. While the increased data on natural disasters improves the scope of machine learning (ML) in this field, progress is relatively slow. One bottleneck is the lack of benchmark datasets that would allow ML researchers to quantify their progress against a standard metric. The objective of this short paper is to explore the state of benchmark datasets for ML tasks related to natural disasters, categorizing them according to the disaster management cycle. We compile a list of existing benchmark datasets introduced in the past five years. We propose a web platform - NADBenchmarks - where researchers can search for benchmark datasets for natural disasters, and we develop a preliminary version of such a platform using our compiled list. This paper is intended to aid researchers in finding benchmark datasets to train their ML models on, and provide general directions for topics where they can contribute new benchmark datasets.