Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Sitan Chen, Zehao Dou, Surbhi Goel, Adam R Klivans, Raghu Meka

We consider the well-studied problem of learning a linear combination of $k$ ReLU activations with respect to a Gaussian distribution on inputs in $d$ dimensions. We give the first polynomial-time algorithm that succeeds whenever $k$ is a constant. All prior polynomial-time learners require additional assumptions on the network, such as positive combining coefficients or the matrix of hidden weight vectors being well-conditioned. Our approach is based on analyzing random contractions of higher-order moment tensors. We use a multi-scale analysis to argue that sufficiently close neurons can be collapsed together, sidestepping the conditioning issues present in prior work. This allows us to design an iterative procedure to discover individual neurons.

Via

Sitan Chen, Adam R Klivans, Raghu Meka

Model extraction attacks have renewed interest in the classic problem of learning neural networks from queries. In this work we give the first polynomial-time algorithm for learning arbitrary one hidden layer neural networks activations provided black-box access to the network. Formally, we show that if $F$ is an arbitrary one hidden layer neural network with ReLU activations, there is an algorithm with query complexity and running time that is polynomial in all parameters that outputs a network $F'$ achieving low square loss relative to $F$ with respect to the Gaussian measure. While a number of works in the security literature have proposed and empirically demonstrated the effectiveness of certain algorithms for this problem, ours is the first with fully polynomial-time guarantees of efficiency even for worst-case networks (in particular our algorithm succeeds in the overparameterized setting).

Via