Abstract:Autonomous UAV operation necessitates reliable mathematical reasoning for tasks such as trajectory planning and power management. While traditional flight control relies on hardcoded equations, recent Large Language Models (LLMs) offer potential for more flexible problem-solving but struggle with reliably selecting and applying correct mathematical formulations and executing precise multi-step arithmetic. We propose RAG-UAV, a retrieval-augmented generation framework designed to improve the mathematical reasoning of several LLMs (including GPT o1/Turbo, Llama-3.2/3.3, Mistral, and DeepSeek R1) in UAV-specific contexts by providing access to relevant domain literature. To conduct an initial assessment, we introduce the UAV-Math-Bench, a small problem set comprising 20 UAV-centric mathematical problems across four difficulty levels. Our experiments demonstrate that incorporating retrieval substantially increases exact answer accuracy (achieving up to 75% with o1), reduces instances of incorrect formulation selection (from 25% without RAG to 5% with RAG), decreases numerical errors, reducing Mean Squared Error (MSE) by orders of magnitude for the best-performing models. This pilot study indicates that RAG can enable general-purpose LLMs to function as more reliable tools for engineering analysis, although direct real-time flight control requires further investigation and validation on a larger scale. All benchmark data, question and answer are publicly available.
Abstract:Traffic Sign Recognition (TSR) detection is a crucial component of autonomous vehicles. While You Only Look Once (YOLO) is a popular real-time object detection algorithm, factors like training data quality and adverse weather conditions (e.g., heavy rain) can lead to detection failures. These failures can be particularly dangerous when visual similarities between objects exist, such as mistaking a 30 km/h sign for a higher speed limit sign. This paper proposes a method that combines video analysis and reasoning, prompting with a human-in-the-loop guide large vision model to improve YOLOs accuracy in detecting road speed limit signs, especially in semi-real-world conditions. It is hypothesized that the guided prompting and reasoning abilities of Video-LLava can enhance YOLOs traffic sign detection capabilities. This hypothesis is supported by an evaluation based on human-annotated accuracy metrics within a dataset of recorded videos from the CARLA car simulator. The results demonstrate that a collaborative approach combining YOLO with Video-LLava and reasoning can effectively address challenging situations such as heavy rain and overcast conditions that hinder YOLOs detection capabilities.
Abstract:Large Language Models (LLMs) have garnered significant attention for their ability to understand text and images, generate human-like text, and perform complex reasoning tasks. However, their ability to generalize this advanced reasoning with a combination of natural language text for decision-making in dynamic situations requires further exploration. In this study, we investigate how well LLMs can adapt and apply a combination of arithmetic and common-sense reasoning, particularly in autonomous driving scenarios. We hypothesize that LLMs hybrid reasoning abilities can improve autonomous driving by enabling them to analyze detected object and sensor data, understand driving regulations and physical laws, and offer additional context. This addresses complex scenarios, like decisions in low visibility (due to weather conditions), where traditional methods might fall short. We evaluated Large Language Models (LLMs) based on accuracy by comparing their answers with human-generated ground truth inside CARLA. The results showed that when a combination of images (detected objects) and sensor data is fed into the LLM, it can offer precise information for brake and throttle control in autonomous vehicles across various weather conditions. This formulation and answers can assist in decision-making for auto-pilot systems.