Abstract:This paper presents a framework for predicting rare, high-impact outcomes by integrating large language models (LLMs) with a multi-model machine learning (ML) architecture. The approach combines the predictive strength of black-box models with the interpretability required for reliable decision-making. We use LLM-powered feature engineering to extract and synthesize complex signals from unstructured data, which are then processed within a layered ensemble of models including XGBoost, Random Forest, and Linear Regression. The ensemble first produces a continuous estimate of success likelihood, which is then thresholded to produce a binary rare-event prediction. We apply this framework to the domain of Venture Capital (VC), where investors must evaluate startups with limited and noisy early-stage data. The empirical results show strong performance: the model achieves precision between 9.8X and 11.1X the random classifier baseline in three independent test subsets. Feature sensitivity analysis further reveals interpretable success drivers: the startup's category list accounts for 15.6% of predictive influence, followed by the number of founders, while education level and domain expertise contribute smaller yet consistent effects.
Abstract:This paper introduces GPT-HTree, a framework combining hierarchical clustering, decision trees, and large language models (LLMs) to address this challenge. By leveraging hierarchical clustering to segment individuals based on salient features, resampling techniques to balance class distributions, and decision trees to tailor classification paths within each cluster, GPT-HTree ensures both accuracy and interpretability. LLMs enhance the framework by generating human-readable cluster descriptions, bridging quantitative analysis with actionable insights.
Abstract:Traditional decision tree algorithms are explainable but struggle with non-linear, high-dimensional data, limiting its applicability in complex decision-making. Neural networks excel at capturing complex patterns but sacrifice explainability in the process. In this work, we present GPTree, a novel framework combining explainability of decision trees with the advanced reasoning capabilities of LLMs. GPTree eliminates the need for feature engineering and prompt chaining, requiring only a task-specific prompt and leveraging a tree-based structure to dynamically split samples. We also introduce an expert-in-the-loop feedback mechanism to further enhance performance by enabling human intervention to refine and rebuild decision paths, emphasizing the harmony between human expertise and machine intelligence. Our decision tree achieved a 7.8% precision rate for identifying "unicorn" startups at the inception stage of a startup, surpassing gpt-4o with few-shot learning as well as the best human decision-makers (3.1% to 5.6%).