Abstract:Generative models and machine learning promise accelerated material discovery in MOFs for CO2 capture and water harvesting but face significant challenges navigating vast chemical spaces while ensuring synthetizability. Here, we present MOFGen, a system of Agentic AI comprising interconnected agents: a large language model that proposes novel MOF compositions, a diffusion model that generates crystal structures, quantum mechanical agents that optimize and filter candidates, and synthetic-feasibility agents guided by expert rules and machine learning. Trained on all experimentally reported MOFs and computational databases, MOFGen generated hundreds of thousands of novel MOF structures and synthesizable organic linkers. Our methodology was validated through high-throughput experiments and the successful synthesis of five "AI-dreamt" MOFs, representing a major step toward automated synthesizable material discovery.
Abstract:Penetration testing, an essential component of cybersecurity, allows organizations to proactively identify and remediate vulnerabilities in their systems, thus bolstering their defense mechanisms against potential cyberattacks. One recent advancement in the realm of penetration testing is the utilization of Language Models (LLMs). We explore the intersection of LLMs and penetration testing to gain insight into their capabilities and challenges in the context of privilige escalation. We create an automated Linux privilege-escalation benchmark utilizing local virtual machines. We introduce an LLM-guided privilege-escalation tool designed for evaluating different LLMs and prompt strategies against our benchmark. We analyze the impact of different prompt designs, the benefits of in-context learning, and the advantages of offering high-level guidance to LLMs. We discuss challenging areas for LLMs, including maintaining focus during testing, coping with errors, and finally comparing them with both stochastic parrots as well as with human hackers.