Abstract:How cost-effectively can strong reasoning abilities be achieved in language models? Driven by this fundamental question, we present Tina, a family of tiny reasoning models achieved with high cost-efficiency. Notably, Tina demonstrates that substantial reasoning performance can be developed using only minimal resources, by applying parameter-efficient updates during reinforcement learning (RL), using low-rank adaptation (LoRA), to an already tiny 1.5B parameter base model. This minimalist approach produces models that achieve reasoning performance which is competitive with, and sometimes surpasses, SOTA RL reasoning models built upon the same base model. Crucially, this is achieved at a tiny fraction of the computational post-training cost employed by existing SOTA models. In fact, the best Tina model achieves a >20\% reasoning performance increase and 43.33\% Pass@1 accuracy on AIME24, at only \$9 USD post-training and evaluation cost (i.e., an estimated 260x cost reduction). Our work reveals the surprising effectiveness of efficient RL reasoning via LoRA. We validate this across multiple open-source reasoning datasets and various ablation settings starting with a single, fixed set of hyperparameters. Furthermore, we hypothesize that this effectiveness and efficiency stem from LoRA rapidly adapting the model to the structural format of reasoning rewarded by RL, while largely preserving the base model's underlying knowledge. In service of accessibility and open research, we fully open-source all code, training logs, and model weights \& checkpoints.
Abstract:Graphs play a crucial role in data mining and machine learning, representing real-world objects and interactions. As graph datasets grow, managing large, decentralized subgraphs becomes essential, particularly within federated learning frameworks. These frameworks face significant challenges, including missing neighbor information, which can compromise model reliability in safety-critical settings. Deployment of federated learning models trained in such settings necessitates quantifying the uncertainty of the models. This study extends the applicability of Conformal Prediction (CP), a well-established method for uncertainty quantification, to federated graph learning. We specifically tackle the missing links issue in distributed subgraphs to minimize its adverse effects on CP set sizes. We discuss data dependencies across the distributed subgraphs and establish conditions for CP validity and precise test-time coverage. We introduce a Variational Autoencoder-based approach for reconstructing missing neighbors to mitigate the negative impact of missing data. Empirical evaluations on real-world datasets demonstrate the efficacy of our approach, yielding smaller prediction sets while ensuring coverage guarantees.