Cooperative perception extends the perception capabilities of autonomous vehicles by enabling multi-agent information sharing via Vehicle-to-Everything (V2X) communication. Unlike traditional onboard sensors, V2X acts as a dynamic "information sensor" characterized by limited communication, heterogeneity, mobility, and scalability. This survey provides a comprehensive review of recent advancements from the perspective of information-centric cooperative perception, focusing on three key dimensions: information representation, information fusion, and large-scale deployment. We categorize information representation into data-level, feature-level, and object-level schemes, and highlight emerging methods for reducing data volume and compressing messages under communication constraints. In information fusion, we explore techniques under both ideal and non-ideal conditions, including those addressing heterogeneity, localization errors, latency, and packet loss. Finally, we summarize system-level approaches to support scalability in dense traffic scenarios. Compared with existing surveys, this paper introduces a new perspective by treating V2X communication as an information sensor and emphasizing the challenges of deploying cooperative perception in real-world intelligent transportation systems.