This paper presents an end-to-end deep learning framework for electromagnetically reconfigurable antenna (ERA)-aided user localization with active sensing, where ERAs provide additional electromagnetic reconfigurability to diversify the received measurements and enhance localization informativeness. To balance sensing flexibility and overhead, we adopt a two-timescale design: the digital combiner is updated at each stage, while the ERA patterns are reconfigured at each substage via a spherical-harmonic representation. The proposed mechanism integrates attention-based feature extraction and LSTM-based temporal learning, enabling the system to learn an optimized sensing strategy and progressively refine the UE position estimate from sequential observations. Simulation results show that the proposed approach consistently outperforms conventional digital beamforming-only and single-stage sensing baselines in terms of localization accuracy. These results highlight the effectiveness of ERA-enabled active sensing for user localization in future wireless systems.