The extraction of a clean background image by removing foreground occlusion holds immense practical significance, but it also presents several challenges. Presently, the majority of de-occlusion research focuses on addressing this issue through the extraction and synthesis of discrete images from calibrated camera arrays. Nonetheless, the restoration quality tends to suffer when faced with dense occlusions or high-speed motions due to limited perspectives and motion blur. To successfully remove dense foreground occlusion, an effective multi-view visual information integration approach is required. Introducing the spike camera as a novel type of neuromorphic sensor offers promising capabilities with its ultra-high temporal resolution and high dynamic range. In this paper, we propose an innovative solution for tackling the de-occlusion problem through continuous multi-view imaging using only one spike camera without any prior knowledge of camera intrinsic parameters and camera poses. By rapidly moving the spike camera, we continually capture the dense stream of spikes from the occluded scene. To process the spikes, we build a novel model \textbf{SpkOccNet}, in which we integrate information of spikes from continuous viewpoints within multi-windows, and propose a novel cross-view mutual attention mechanism for effective fusion and refinement. In addition, we contribute the first real-world spike-based dataset \textbf{S-OCC} for occlusion removal. The experimental results demonstrate that our proposed model efficiently removes dense occlusions in diverse scenes while exhibiting strong generalization.