Reliable short-term demand forecasting is essential for managing shared micro-mobility services and ensuring responsive, user-centered operations. This study introduces T-STAR (Two-stage Spatial and Temporal Adaptive contextual Representation), a novel transformer-based probabilistic framework designed to forecast station-level bike-sharing demand at a 15-minute resolution. T-STAR addresses key challenges in high-resolution forecasting by disentangling consistent demand patterns from short-term fluctuations through a hierarchical two-stage structure. The first stage captures coarse-grained hourly demand patterns, while the second stage improves prediction accuracy by incorporating high-frequency, localized inputs, including recent fluctuations and real-time demand variations in connected metro services, to account for temporal shifts in short-term demand. Time series transformer models are employed in both stages to generate probabilistic predictions. Extensive experiments using Washington D.C.'s Capital Bikeshare data demonstrate that T-STAR outperforms existing methods in both deterministic and probabilistic accuracy. The model exhibits strong spatial and temporal robustness across stations and time periods. A zero-shot forecasting experiment further highlights T-STAR's ability to transfer to previously unseen service areas without retraining. These results underscore the framework's potential to deliver granular, reliable, and uncertainty-aware short-term demand forecasts, which enable seamless integration to support multimodal trip planning for travelers and enhance real-time operations in shared micro-mobility services.