Neuroimaging has profoundly enhanced our understanding of the human brain by characterizing its structure, function, and connectivity through modalities like MRI, fMRI, EEG, and PET. These technologies have enabled major breakthroughs across the lifespan, from early brain development to neurodegenerative and neuropsychiatric disorders. Despite these advances, the brain is a complex, multiscale system, and neuroimaging measurements are correspondingly high-dimensional. This creates major statistical challenges, including measurement noise, motion-related artifacts, substantial inter-subject and site/scanner variability, and the sheer scale of modern studies. This paper explores statistical opportunities and challenges in neuroimaging across four key areas: (i) brain development from birth to age 20, (ii) the adult and aging brain, (iii) neurodegeneration and neuropsychiatric disorders, and (iv) brain encoding and decoding. After a quick tutorial on major imaging technologies, we review cutting-edge studies, underscore data and modeling challenges, and highlight research opportunities for statisticians. We conclude by emphasizing that close collaboration among statisticians, neuroscientists, and clinicians is essential for translating neuroimaging advances into improved diagnostics, deeper mechanistic insight, and more personalized treatments.