https://github.com/pymaster17/Spiking-Vocos.
Despite the remarkable progress in the synthesis speed and fidelity of neural vocoders, their high energy consumption remains a critical barrier to practical deployment on computationally restricted edge devices. Spiking Neural Networks (SNNs), widely recognized for their high energy efficiency due to their event-driven nature, offer a promising solution for low-resource scenarios. In this paper, we propose Spiking Vocos, a novel spiking neural vocoder with ultra-low energy consumption, built upon the efficient Vocos framework. To mitigate the inherent information bottleneck in SNNs, we design a Spiking ConvNeXt module to reduce Multiply-Accumulate (MAC) operations and incorporate an amplitude shortcut path to preserve crucial signal dynamics. Furthermore, to bridge the performance gap with its Artificial Neural Network (ANN) counterpart, we introduce a self-architectural distillation strategy to effectively transfer knowledge. A lightweight Temporal Shift Module is also integrated to enhance the model's ability to fuse information across the temporal dimension with negligible computational overhead. Experiments demonstrate that our model achieves performance comparable to its ANN counterpart, with UTMOS and PESQ scores of 3.74 and 3.45 respectively, while consuming only 14.7% of the energy. The source code is available at