Accurate molecular subtype classification is essential for personalized breast cancer treatment, yet conventional immunohistochemical analysis relies on invasive biopsies and is prone to sampling bias. Although dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables non-invasive tumor characterization, clinical workflows typically acquire only single-phase post-contrast images to reduce scan time and contrast agent dose. In this study, we propose a spatial multi-task learning framework for breast cancer molecular subtype prediction from clinically practical single-phase DCE-MRI. The framework simultaneously predicts estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, and the Ki-67 proliferation index -- biomarkers that collectively define molecular subtypes. The architecture integrates a deep feature extraction network with multi-scale spatial attention to capture intratumoral and peritumoral characteristics, together with a region-of-interest weighting module that emphasizes the tumor core, rim, and surrounding tissue. Multi-task learning exploits biological correlations among biomarkers through shared representations with task-specific prediction branches. Experiments on a dataset of 960 cases (886 internal cases split 7:1:2 for training/validation/testing, and 74 external cases evaluated via five-fold cross-validation) demonstrate that the proposed method achieves an AUC of 0.893, 0.824, and 0.857 for ER, PR, and HER2 classification, respectively, and a mean absolute error of 8.2\% for Ki-67 regression, significantly outperforming radiomics and single-task deep learning baselines. These results indicate the feasibility of accurate, non-invasive molecular subtype prediction using standard imaging protocols.