Intelligent devices have become deeply integrated into everyday life, generating vast amounts of user interactions that form valuable personal knowledge. Efficient organization of this knowledge in user memory is essential for enabling personalized applications. However, current research on memory writing, management, and reading using large language models (LLMs) faces challenges in filtering irrelevant information and in dealing with rising computational costs. Inspired by the concept of selective attention in the human brain, we introduce a memory discrimination task. To address large-scale interactions and diverse memory standards in this task, we propose a Scene-Aware Memory Discrimination method (SAMD), which comprises two key components: the Gating Unit Module (GUM) and the Cluster Prompting Module (CPM). GUM enhances processing efficiency by filtering out non-memorable interactions and focusing on the salient content most relevant to application demands. CPM establishes adaptive memory standards, guiding LLMs to discern what information should be remembered or discarded. It also analyzes the relationship between user intents and memory contexts to build effective clustering prompts. Comprehensive direct and indirect evaluations demonstrate the effectiveness and generalization of our approach. We independently assess the performance of memory discrimination, showing that SAMD successfully recalls the majority of memorable data and remains robust in dynamic scenarios. Furthermore, when integrated into personalized applications, SAMD significantly enhances both the efficiency and quality of memory construction, leading to better organization of personal knowledge.