Real-time transmission of visual data over wireless networks remains highly challenging, even when leveraging advanced deep neural networks, particularly under severe channel conditions such as limited bandwidth and weak connectivity. In this paper, we propose a novel Resilient Tokenization-Enabled (ResiTok) framework designed for ultra-low-rate image transmission that achieves exceptional robustness while maintaining high reconstruction quality. By reorganizing visual information into hierarchical token groups consisting of essential key tokens and supplementary detail tokens, ResiTok enables progressive encoding and graceful degradation of visual quality under constrained channel conditions. A key contribution is our resilient 1D tokenization method integrated with a specialized zero-out training strategy, which systematically simulates token loss during training, empowering the neural network to effectively compress and reconstruct images from incomplete token sets. Furthermore, the channel-adaptive coding and modulation design dynamically allocates coding resources according to prevailing channel conditions, yielding superior semantic fidelity and structural consistency even at extremely low channel bandwidth ratios. Evaluation results demonstrate that ResiTok outperforms state-of-the-art methods in both semantic similarity and visual quality, with significant advantages under challenging channel conditions.