Length generalization is the ability of language models to maintain performance on inputs longer than those seen during pretraining. In this work, we introduce a simple yet powerful position encoding (PE) strategy, Random Float Sampling (RFS), that generalizes well to lengths unseen during pretraining or fine-tuning. In particular, instead of selecting position indices from a predefined discrete set, RFS uses randomly sampled continuous values, thereby avoiding out-of-distribution (OOD) issues on unseen lengths by exposing the model to diverse indices during training. Since assigning indices to tokens is a common and fundamental procedure in widely used PEs, the advantage of RFS can easily be incorporated into, for instance, the absolute sinusoidal encoding, RoPE, and ALiBi. Experiments corroborate its effectiveness by showing that RFS results in superior performance in length generalization tasks as well as zero-shot commonsense reasoning benchmarks.