Orthogonal Time Frequency Space (OTFS) suffers from high peak-to-average power ratio (PAPR) when the number of Doppler bins is large. To address this issue, a discrete Fourier transform spread OTFS (DFT-s-OTFS) scheme is employed by applying DFT spreading across the Doppler dimension. This paper presents a thorough PAPR analysis of DFT-s-OTFS in the uplink scenario using different pulse shaping filters and resource allocation strategies. Specifically, we derive a PAPR upper bound of DFT-s-OTFS with interleaved and block Doppler resource allocation schemes. Our analysis reveals that DFT-s-OTFS with interleaved allocation yields a lower PAPR than that of block allocation. Furthermore, we show that interleaved allocation produces a periodic time-domain signal composed of repeated quadrature amplitude modulated (QAM) symbols which simplifies the transmitter design. Based on our analytical results, the root raised cosine (RRC) pulse generally results in a higher maximum PAPR compared to the rectangular pulse. Simulation results confirm the validity of the derived PAPR upper bounds. Furthermore, we also demonstrate through BER simulation analysis that the DFT-s-OTFS gives the same performance as OTFS without DFT spreading.