Neighborhood Aggregation Strategy (NAS) is a widely used approach in graph embedding, underpinning both Graph Neural Networks (GNNs) and Weisfeiler-Lehman (WL) methods. However, NAS-based methods are identified to be prone to over-smoothing-the loss of node distinguishability with increased iterations-thereby limiting their effectiveness. This paper identifies two characteristics in a network, i.e., the distributions of nodes and node degrees that are critical for expressive representation but have been overlooked in existing methods. We show that these overlooked characteristics contribute significantly to over-smoothing of NAS-methods. To address this, we propose a novel weighted distribution-aware kernel that embeds nodes while taking their distributional characteristics into consideration. Our method has three distinguishing features: (1) it is the first method to explicitly incorporate both distributional characteristics; (2) it requires no optimization; and (3) it effectively mitigates the adverse effects of over-smoothing, allowing WL to preserve node distinguishability and expressiveness even after many iterations of embedding. Experiments demonstrate that our method achieves superior community detection performance via spectral clustering, outperforming existing graph embedding methods, including deep learning methods, on standard benchmarks.