Optical link tomography (OLT) is a rapidly evolving field that allows the multi-span, end-to-end visualization of optical power along fiber links in multiple dimensions from network endpoints, solely by processing signals received at coherent receivers. This paper has two objectives: (1) to report the first field trial of OLT, using a commercial transponder under standard DWDM transmission, and (2) to extend its capability to visualize across 4D (distance, time, frequency, and polarization), allowing for locating and measuring multiple QoT degradation causes, including time-varying power anomalies, spectral anomalies, and excessive polarization dependent loss. We also address a critical aspect of OLT, i.e., its need for high fiber launch power, by improving power profile signal-to-noise ratio through averaging across all available dimensions. Consequently, multiple loss anomalies in a field-deployed link are observed even at launch power lower than the system-optimal level. The applications and use cases of OLT from network commissioning to provisioning and operation for current and near-term network scenarios are also discussed.