Developers insert logging statements in source code to capture relevant runtime information essential for maintenance and debugging activities. Log level choice is an integral, yet tricky part of the logging activity as it controls log verbosity and therefore influences systems' observability and performance. Recent advances in ML-based log level prediction have leveraged large language models (LLMs) to propose log level predictors (LLPs) that demonstrated promising performance improvements (AUC between 0.64 and 0.8). Nevertheless, current LLM-based LLPs rely on randomly selected in-context examples, overlooking the structure and the diverse logging practices within modern software projects. In this paper, we propose OmniLLP, a novel LLP enhancement framework that clusters source files based on (1) semantic similarity reflecting the code's functional purpose, and (2) developer ownership cohesion. By retrieving in-context learning examples exclusively from these semantic and ownership aware clusters, we aim to provide more coherent prompts to LLPs leveraging LLMs, thereby improving their predictive accuracy. Our results show that both semantic and ownership-aware clusterings statistically significantly improve the accuracy (by up to 8\% AUC) of the evaluated LLM-based LLPs compared to random predictors (i.e., leveraging randomly selected in-context examples from the whole project). Additionally, our approach that combines the semantic and ownership signal for in-context prediction achieves an impressive 0.88 to 0.96 AUC across our evaluated projects. Our findings highlight the value of integrating software engineering-specific context, such as code semantic and developer ownership signals into LLM-LLPs, offering developers a more accurate, contextually-aware approach to logging and therefore, enhancing system maintainability and observability.