In the evolving landscape of sixth-generation (6G) mobile communication, multiple-input multiple-output (MIMO) systems are incorporating an unprecedented number of antenna elements, advancing towards Extremely large-scale multiple-input-multiple-output (XL-MIMO) systems. This enhancement significantly increases the spatial degrees of freedom, offering substantial benefits for wireless positioning. However, the expansion of the near-field range in XL-MIMO challenges the traditional far-field assumptions used in previous MIMO models. Among various configurations, uniform circular arrays (UCAs) demonstrate superior performance by maintaining constant angular resolution, unlike linear planar arrays. Addressing how to leverage the expanded aperture and harness the near-field effects in XL-MIMO systems remains an area requiring further investigation. In this paper, we introduce an attention-enhanced deep learning approach for precise positioning. We employ a dual-path channel attention mechanism and a spatial attention mechanism to effectively integrate channel-level and spatial-level features. Our comprehensive simulations show that this model surpasses existing benchmarks such as attention-based positioning networks (ABPN), near-field positioning networks (NFLnet), convolutional neural networks (CNN), and multilayer perceptrons (MLP). The proposed model achieves superior positioning accuracy by utilizing covariance metrics of the input signal. Also, simulation results reveal that covariance metric is advantageous for positioning over channel state information (CSI) in terms of positioning accuracy and model efficiency.