As wireless systems evolve toward higher frequencies and extremely large antenna arrays, near-field (NF) propagation becomes increasingly dominant. Unlike far-field (FF) communication, which relies on a planar-wavefront model and is limited to angular-domain beamsteering, NF propagation exhibits spherical wavefronts that enable beamfocusing in both angle and distance, i.e., the polar domain, offering new opportunities for spatial multiple access. This paper develops an analytical stochastic geometry (SG) framework for a multi-user system assisted by polar-domain beamfocusing, which jointly captures NF propagation characteristics and the spatial randomness of user locations. The intrinsic coupling between angle and distance in the NF antenna pattern renders inter-user interference analysis intractable. To address this challenge, we propose a tractable near-field multi-level antenna pattern (NF-MLAP) approximation, which enables computationally efficient expressions and tight upper bounds for key performance metrics, including coverage probability, spectrum efficiency, and area spectrum efficiency. Analytical and simulation results demonstrate that the proposed framework accurately captures performance trends and reveals fundamental trade-offs between hardware configuration (including the number of antennas and radio frequency chains) and system performance (in terms of spatial resource reuse and interference mitigation).