Monitoring urban tree dynamics is vital for supporting greening policies and reducing risks to electrical infrastructure. Airborne laser scanning has advanced large-scale tree management, but challenges remain due to complex urban environments and tree variability. Multispectral (MS) light detection and ranging (LiDAR) improves this by capturing both 3D spatial and spectral data, enabling detailed mapping. This study explores tree point extraction using MS-LiDAR and deep learning (DL) models. Three state-of-the-art models are evaluated: Superpoint Transformer (SPT), Point Transformer V3 (PTv3), and Point Transformer V1 (PTv1). Results show the notable time efficiency and accuracy of SPT, with a mean intersection over union (mIoU) of 85.28%. The highest detection accuracy is achieved by incorporating pseudo normalized difference vegetation index (pNDVI) with spatial data, reducing error rate by 10.61 percentage points (pp) compared to using spatial information alone. These findings highlight the potential of MS-LiDAR and DL to improve tree extraction and further tree inventories.