https://github.com/LamNgo1/moca-hesp
High-dimensional Bayesian Optimization (BO) has attracted significant attention in recent research. However, existing methods have mainly focused on optimizing in continuous domains, while combinatorial (ordinal and categorical) and mixed domains still remain challenging. In this paper, we first propose MOCA-HESP, a novel high-dimensional BO method for combinatorial and mixed variables. The key idea is to leverage the hyper-ellipsoid space partitioning (HESP) technique with different categorical encoders to work with high-dimensional, combinatorial and mixed spaces, while adaptively selecting the optimal encoders for HESP using a multi-armed bandit technique. Our method, MOCA-HESP, is designed as a \textit{meta-algorithm} such that it can incorporate other combinatorial and mixed BO optimizers to further enhance the optimizers' performance. Finally, we develop three practical BO methods by integrating MOCA-HESP with state-of-the-art BO optimizers for combinatorial and mixed variables: standard BO, CASMOPOLITAN, and Bounce. Our experimental results on various synthetic and real-world benchmarks show that our methods outperform existing baselines. Our code implementation can be found at