Structural health monitoring (SHM) involves sensor deployment, data acquisition, and data interpretation, commonly implemented via a tedious wired system. The information processing in current practice majorly depends on electronic computers, albeit with universal applications, delivering challenges such as high energy consumption and low throughput due to the nature of digital units. In recent years, there has been a renaissance interest in shifting computations from electronic computing units to the use of real physical systems, a concept known as physical computation. This approach provides the possibility of thinking out of the box for SHM, seamlessly integrating sensing and computing into a pure-physical entity, without relying on external electronic power supplies, thereby properly coping with resource-restricted scenarios. The latest advances of metamaterials (MM) hold great promise for this proactive idea. In this paper, we introduce a programmable metamaterial-based sensor (termed as MM-sensor) for physically processing structural vibration information to perform specific SHM tasks, such as structural damage warning (binary classification) in this initiation, without the need for further information processing or resource-consuming, that is, the data collection and analysis are completed in-situ at the sensor level. We adopt the configuration of a locally resonant metamaterial plate (LRMP) to achieve the first fabrication of the MM-sensor. We take advantage of the bandgap properties of LRMP to physically differentiate the dynamic behavior of structures before and after damage. By inversely designing the geometric parameters, our current approach allows for adjustments to the bandgap features. This is effective for engineering systems with a first natural frequency ranging from 9.54 Hz to 81.86 Hz.