Robotic manipulation of unseen objects via natural language commands remains challenging. Language driven robotic grasping (LDRG) predicts stable grasp poses from natural language queries and RGB-D images. Here we introduce Mask-guided feature pooling, a lightweight enhancement to existing LDRG methods. Our approach employs a two-stage training strategy: first, a vision-language model generates feature maps from CLIP-fused embeddings, which are upsampled and weighted by text embeddings to produce segmentation masks. Next, the decoder generates separate feature maps for grasp prediction, pooling only token features within these masked regions to efficiently predict grasp poses. This targeted pooling approach reduces computational complexity, accelerating both training and inference. Incorporating mask pooling results in a 12% improvement over prior approaches on the OCID-VLG benchmark. Furthermore, we introduce RefGraspNet, an open-source dataset eight times larger than existing alternatives, significantly enhancing model generalization for open-vocabulary grasping. By extending 2D grasp predictions to 3D via depth mapping and inverse kinematics, our modular method achieves performance comparable to recent Vision-Language-Action (VLA) models on the LIBERO simulation benchmark, with improved generalization across different task suites. Real-world experiments on a 7 DoF Franka robotic arm demonstrate a 57% success rate with unseen objects, surpassing competitive baselines by 7%. Code will be released post publication.