As one of the world's most populous countries, with 700 languages spoken, Indonesia is behind in terms of NLP progress. We introduce LoraxBench, a benchmark that focuses on low-resource languages of Indonesia and covers 6 diverse tasks: reading comprehension, open-domain QA, language inference, causal reasoning, translation, and cultural QA. Our dataset covers 20 languages, with the addition of two formality registers for three languages. We evaluate a diverse set of multilingual and region-focused LLMs and found that this benchmark is challenging. We note a visible discrepancy between performance in Indonesian and other languages, especially the low-resource ones. There is no clear lead when using a region-specific model as opposed to the general multilingual model. Lastly, we show that a change in register affects model performance, especially with registers not commonly found in social media, such as high-level politeness `Krama' Javanese.