In cone-beam X-ray transmission imaging, due to the divergence of X-rays, imaged structures with different depths have different magnification factors on an X-ray detector, which results in perspective deformation. Perspective deformation causes difficulty in direct, accurate geometric assessments of anatomical structures. In this work, to reduce perspective deformation in X-ray images acquired from regular cone-beam computed tomography (CBCT) systems, we investigate on learning perspective deformation, i.e., converting perspective projections into orthogonal projections. Directly converting a single perspective projection image into an orthogonal projection image is extremely challenging due to the lack of depth information. Therefore, we propose to utilize one additional perspective projection, a complementary (180-degree) or orthogonal (90-degree) view, to provide a certain degree of depth information. Furthermore, learning perspective deformation in different spatial domains is investigated. Our proposed method is evaluated on numerical spherical bead phantoms as well as patients' chest and head X-ray data. The experiments on numerical bead phantom data demonstrate that learning perspective deformation in polar coordinates has significant advantages over learning in Cartesian coordinates, as root-mean-square error (RMSE) decreases from 5.31 to 1.40, while learning in log-polar coordinates has no further considerable improvement (RMSE = 1.85). In addition, using a complementary view (RMSE = 1.40) is better than an orthogonal view (RMSE = 3.87). The experiments on patients' chest and head data demonstrate that learning perspective deformation using dual complementary views is also applicable in anatomical X-ray data, allowing accurate cardiothoracic ratio measurements in chest X-ray images and cephalometric analysis in synthetic cephalograms from cone-beam X-ray projections.